torch_staintools.functional.utility package
Submodules
torch_staintools.functional.utility.implementation module
- torch_staintools.functional.utility.implementation.default_device(device: device | None = None) device | None
- Default device if device is not given. - Parameters:
- device – input device. 
- Returns:
- torch.device(‘cpu’) if None, otherwise the input device itself. 
 
- torch_staintools.functional.utility.implementation.default_rng(rng: Generator | int | None, device: device | None) Generator | None
- Helper function to get the default random number generator (torch.Generator) - Parameters:
- rng – Optional. int seed or torch.Generator. If not set (None) then return None. Identity mapping if input is already a generator. Create a new generator and specify the seed if an int seed is given. 
- device – device of the rng 
 
- Returns:
- torch.Generator 
 
- torch_staintools.functional.utility.implementation.img_from_concentration(concentration: Tensor, stain_matrix: Tensor, img_shape: Tuple[int, ...], out_range: Tuple[float, float] = (0, 1))
- reconstruct image from concentration and stain matrix to RGB - Parameters:
- concentration – B x (HW) x num_stain 
- stain_matrix – B x num_stain x input channel 
- img_shape – 
- out_range – 
 
 - Returns: 
- torch_staintools.functional.utility.implementation.nanstd(data: Tensor, dim: int | tuple | None = None, correction: float = 1) Tensor
- Compute the standard deviation while ignoring NaNs. - Always keep the dim. - Parameters:
- data – Input tensor. 
- dim – The dimension or dimensions to reduce. If None (default), reduces all dimensions. 
- correction – Difference between the sample size and sample degrees of freedom. Defaults 1 (Bessel’s). 
 
- Returns:
- Standard deviation with NaNs ignored. If dim is provided, it reduces along that dimension(s), otherwise reduces all dimensions. 
- Return type:
- torch.Tensor 
 
- torch_staintools.functional.utility.implementation.transpose_trailing(mat: Tensor)
- Helper function to transpose the trailing dimension, since data is batchified. - Parameters:
- mat – input tensor ixjxk 
- Returns:
- output with flipped dimension from ixjxk –> ixkxj